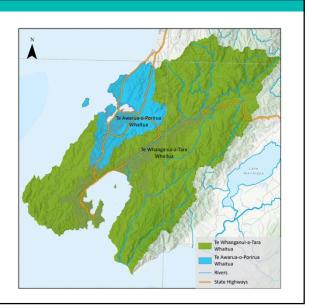
Plan Change 1 to the Natural Resources Plan

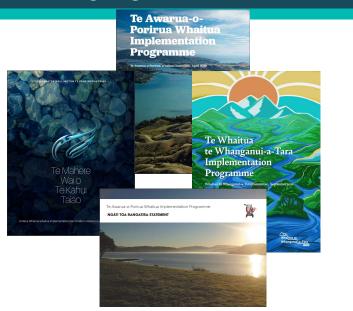
Presentation to Te Awa Kairangi communities, 6 December 2023 Presenters: Hayley Vujcich and Mary O'Callahan


1

Outline

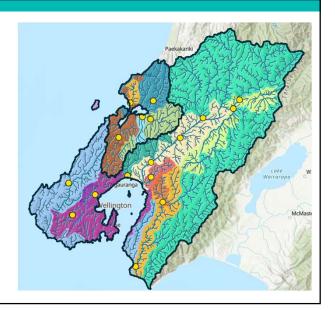
- **Purpose:** provide some background to Plan Change 1 (PC1) and overview of its contents
- Outline:
 - What is PC1 and what is it trying to achieve?
 - How does PC1 impact different activities?
 - What happens from here?
 - Q+A session

What is PC1?


- Proposes changes to the Natural Resources Plan for the Wellington Region
- Notified 30 October 2023
- Gives effect to the National Policy Statement for Freshwater Management (NPS-FM) – first time for GWRC
- Applies to Te Awarua-o-Porirua and Te Whanganui-a-Tara whaitua
- Also, some region-wide changes...

3

What is PC1? – Whaitua processes and giving effect to NPS-FM

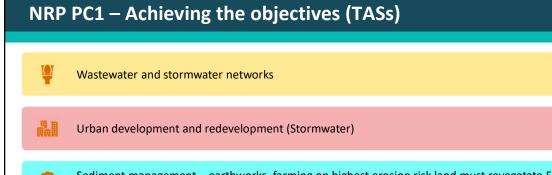

- All Councils must change to regional plans by Dec 2024
- GWRC set up whaitua process
 - Te Awarua-o-Porirua 2015-2019
 - Te Whanganui-a-Tara 2019-2021
- PC1 embeds the recommendations of the WIPs and mana whenua statements

Giving effect to the NPS-FM – What does this mean?

National Objectives Framework (NOF):

- Set up a spatial boundaries, where...
- Objectives for the health of waterways are set, which are met by ...
- Placing limits on resource use as rules, supported by non-regulatory methods including Freshwater Action Plans

5


PC1 – What you'll see

- Most content in Chapters 8 and 9
 - Objectives for 2040 and 2100
 - Policies
 - Rules: stormwater, wastewater, earthworks, forestry, farming, greenfield and brownfield development
 - Te Awarua-o-Porirua whaitua only: rules for take and use of water
- Changes to definitions, other methods, schedules and maps

Table 8.4: Target attrib	ute states	for rivers																					
		Part Freehwater Management Units for Te Awa Kaizangi, Oronganango and Wainulemate (Map 70)																					
	Croegorongo, Te Awa Kalirangi and Waliraiomata small forested and Te Awa Kalirangi forested mainsterns				Te Awa Kairangi lowar mainstam					Te Awa Kairangi raral streams and raral mainstems						Te Awa Kainangi urban streama							
					Whakatikei R. C. Riverstone Par				Hatt R. & Boulcott Par Baseline TAS' EMI					H	Mangaroa R. d. Te Marua				Hulls Ck ad, Reynolds Bach Dr.			Pat	
	_			Beseline		TAS		FMU		Baseline		TAS		Baseline		TAS		EMU default	Baseline?		TAS:		FMU
Parameter	Unit	Statistic	Timeframe	Nameric	State	Numeric	State	TAS	Numeric	State	Nameric	State	TAS	Numeric	State	Nameric	State	TAS!	Numeric	Sate	Numeric	State	TAS
Periphyton biomass?	ma.shi-aim?	52ml 948		Insufficient data 550		550	å		284	R	<u>\$120</u>	8	1	220	2	<u>\$120 B</u>	B	L	Insufficient data		\$200	ç	
Ammonia (toxicity)	095	Median 95* Nile		0.002			۵		0.002	6		۵	м	0.002		м	٥	м	0.008	۵		6	
				0.004					0.003					0.01	-				0.012			<u> </u>	н
Nitrate (Insicity)	mg5.	Median 95 ^a Nale		0.1	<u>à</u>		٨		0.2	6		۸		<u>9.4</u> 0.5					0.2	8	н	6	
Suspended fine sediment	Black disc (m)			4		м	A	м	2.4	C	¥2.95	A		1.5	0	#2.22	C		12	12 A		٨	
		Mediat		22	-		-	- C	58		658	-		170		\$130	-		1,300	-	\$130	_	
Escherichia coli (K. coli)	(108m).	5+200100mL		1			ð		18		\$15		Ĩ.	35		530 B			220		\$34		
		%>643100nt		1	8				Ł	8	纬	ç		18	2		B		29	£	52	ç	1
		95 th Nile		292					1,290		<u>s1,200</u>			2,450		\$1,000		Ť.	13.000		<u>s1,200</u>		
Fish	Fish-IBI	Latest	1			234	A	1			<u>×34</u>	<u>A</u>	м			234	<u>A</u>	1		_	204	6	1
	h community health (abundance, atractare and composition)		1	Insufficient data		<u>N92</u>	Ā		Insufficient date		NN	<u>n</u>		insufficient date		<u>NA³</u>	<u>0</u>				<u>NW</u>	£	
Macroinvertebrates (1 of 2)	MCI	Median	Bx.2040	129.5	123.5 B 2130 A		1	109.1 C		<u>110</u>	8	1	118.3	9	2118.3	в	1	Insufficient data		遡	c	1	
EXCOMPOSED IN CO. A	GRICI	Median	NB-ANTH	7.0	u.	22	٩	1	5.5	*	5.5	M.		5.7	×.	257			1		24.5	м.	
Macroinvertebrates (2 of 2)	ASPN	Median		0.56	8	3.05	A		0.4	8	M	<u>n</u>		0.5	. N		B				20.3	<u>c</u>	
Deposited fine sediment ²	3cover	Median		25	ç	613	A		5	6	×	A		2	6		A		<u>11</u>	8	ы	B	м
Dissolved oxygen	nsi.	1 day minimum 7 day mean minimum		insto	ert data	<u>275</u> 28.0	۵	н	Instic	Insufficient data		۵		insuffic	ent data	27.5	۵	¥	Insufficient data		<u>27.5</u>	6	-
Dissolved inorganic nitrogent	rgf.	Median	1	2	15		4	1	1	2				2	44	1	ų.	1	0.1	8			1
Dissolved reactive phosphorus*	195	Median	1	0.008		<u>#3.006</u>		1	0.064		¥		M	0.010			±0.005		0.010			M	
	1565	258-534e		2.0	11	52	011	÷	0.1	208				0.1	215	50	\$15	1	9.9	27			
Dissolved copper	Jau Jau	Median 35 ^a Nale		insufficient data		<u>51</u> <u>514</u>	<u>51.4</u> B 52.4		<u>01</u>	6		۵		insufficient date		<u>51</u> <u>314</u>	۵		<u>19</u> <u>16</u>	£	<u>\$1.4</u> <u>\$1.8</u>	B	
Disselved zinc	Jeu .	Median 95* Nile				<u>524</u> 58			<u>85</u> 19	6	M	A		rautio	ert gibi	<u>\$24</u> 58	۵	M.	8.0 19.2	ç	515	B	11
Freeselen matsholism ¹	a Oun? di	NH ⁵	1				_			_		-	_				_			_		_	

			Waiwhetű Stream	at Whites Line East			
			State (band)			Pa	
_		Parameter	Baseline	TAS		defa	fault Constant of the second se
-		Periphyton biomass	No baseline, insufficient data	c	0	_	
	utes	Ammonia (toxicity)	В	A		1	- Share a strategy of the second strategy of
┥	NOF 2A attrib	Nitrate (toxicity)	A	A.		Ι.	
	NOF	Suspended fine sediment	A	A		<u>n</u>	
		E. coli	E	с			
		Fish (IBI)	No baseline, insufficient data	A.			
h com		Macroinvertebrates 1 (MCI and QMCI)	D	с		h	
M	utes	Macroinvertebrates 2 (ASPM)	D	с			
M	2B attrib	Deposited fine sediment	D	с		1	
	NOF 2B	Dissolved oxygen	No baseline, insufficient data	A			
Dis		Dissolved reactive phosphorus	Imp	rove		ħ	
Diss		Ecosystem metabolism	Mai	ntain			
_	outes	Dissolved copper	c	А		1	
	ua attrib	Dissolved zinc	D	В		-	
_	Whait	Fish community health	No baseline, insufficient data	c	-		_ance, CC BY-SA 2.0 <https: 2.0="" by-sa="" creativecommons.org="" licenses="">, via Wikimedia Commons</https:>

7

Sediment management – earthworks, farming on highest erosion risk land must revegetate 50% area in ten years; significant Council support required; forestry is highly controlled

Farming – focused farm environment plan system; registration required for smaller farms (4-20ha)

Council to prepare and deliver Freshwater Action Plans for Greater Wellington targeting of non-regulatory **** actions

Wastewater network

- Wastewater treatment plant and wastewater network catchment discharges:
 - Wastewater discharges must meet standards by 2040
 - · Addresses wet weather overflows and dry weather discharges
 - Driven by E. coli TAS in freshwater and enterococci in coastal water <u>significant</u> <u>improvements required for freshwater</u>
 - Global consents to implement a Wastewater Network Catchment Improvement Strategy

Stormwater network (existing urban development)

- Discharges from stormwater networks must meet standards for copper and zinc by 2040
- Requires catchment-scale treatment thru Wellington Water global stormwater consent
- Costs borne by ratepayers
- Reducing the burden on ratepayers by requiring new development and redevelopment to implement stormwater treatment
- Currently in the NRP similar requirement to improve water quality but with no standards or timeframes

Stormwater – new and redeveloped impervious surfaces

- Best opportunity to reduce zinc and copper in freshwater is through ensuring stormwater treatment when development new urban areas
- PC1 has new rules requiring stormwater treatment for new development and redevelopment
- Defined term for 'redevelopment' intended to capture redevelopment (i.e. rebuilding) in all existing urban situations, i.e., roads, urban properties
- Permitted activity subject to conditions less than 1000m² of new or redeveloped impervious surfaces

11

Stormwater – new and redeveloped impervious areas

- Consent required for sites >1000m² in both existing urban areas and new greenfield areas:
 - Devices must capture and treat 85% of mean annual runoff this is a standard for greenfield development and a target for existing urban areas
- Greenfield development:
 - Requires a financial contribution to 'offset' residual contaminants - no option under NPS-FM to deteriorate water quality through a new discharge
 - Is prohibited in outside of planned areas (see Maps 86-89)

Earthworks

- Provisions seeking a reduction of sediment entering watercourses which affects water clarity and deposited sediment
- Step up in good practice expected on small and large sites
- Small urban sites (<3,000m²) there is no discharge to water, including via a stormwater network – permitted activity
- Large sites: consent required, now need to meet discharge standard and new winter shut down requirement

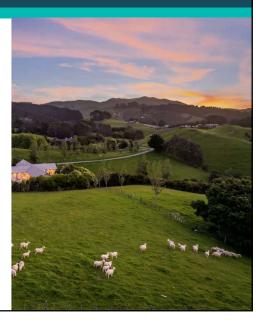
13

Vegetation clearance, plantation forestry

- New maps identifying highest and high erosion risk land
- Consent now required for vegetation clearance >200m² on highest erosion risk land (unless part of erosion management). Must have an erosion risk management plan.
- Afforestation, earthworks or mechanical land preparation for plantation forestry is no longer allowed on **highest** erosion risk land.
- Consent required for other plantation forestry activities on other land.

14

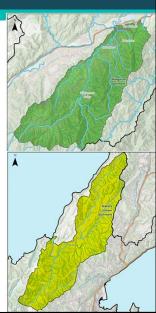
Farming


- Focuses on improving nitrogen, sediment and *E. coli* TAS
- Farming generally permitted, but requires Farm Environment Plans for large farms and generally just registration with GW if small block
- Resource consent required where land is changed to a more intensive land use that generates higher nutrient discharges

15

Farming – high risk activities

- Activities on highest erosion risk land (Maps 90-95)
 - Farming must include Erosion Risk Treatment Plan driving 50% of highest erosion risk land retired and planted in 10 years
- Annual nitrogen loss risk assessment to demonstrate N loss risk is not increasing
- Additional requirements for Mākara and Mangaroa catchments


Stock exclusion – Mākara and Mangaroa catchments

- PC1 seeks stock exclusion for small streams in Mākara and Mangaroa - sediment below the national bottom line
- Three options:
 - Fence off
 - Include a Small Stream Riparian Programme in a Farm Environment Plan, or
 - Seek resource consent to depart requirements
- Assesses risk of stock accessing streams, what can be done to limit access, whether fencing is practicable and where not, offsetting options

17

Freshwater Action Plans

- Alongside limits and consent conditions, Freshwater Action Plans deliver key actions for achieving TASs
- PC1 directs preparation of FAPs in secondary process:
 - Where the NPS-FM makes it compulsory
 - Where we need it to support and supplement regulatory actions
 - For areas with very high values e.g. Lakes Köhangaterā and Köhangapiripiri
- FAPs will be region-wide process, undertaken in partnership with mana whenua
- Will be highly engaged with communities and stakeholder partners

				<u> </u>					
					Wai	whetü Str	eam		
				Waiwhe	rtú S. @ V	Whites Lin	e East	Part FMU	
				Basel	line	TA	S1	default	
Parameter	Unit	Statistic	Timeframe	Numeric	State	Numeric	State	TAS ¹	
Periphyton biomass ²	mg chl-a/m2	92 nd %ile		Insufficie	nt data	<u>≤200</u>			
Ammonia (toxicity)	mg/L	Median 95 th %ile		0.027	B	<u>\$0.02</u>	A	1	
Nitrate (toxicity)	mg/L	Median 95 th %ile		0.5	A		A		
Suspended fine sediment	Black disc(m)	Median		0.9 1.1	A	M	A	m	
	/100mL	Median	495		-	≤130	-		
Frank and a lot of the second		%>260/100mL			-	\$34			Wastewater consents with strategies to improve to
Escherichia coli (E. coli)		%>540/100mL		<u>≤20</u>	~	1 2 1	achieve <i>E. coli</i> TAS		
		95 ^m %ile		5.800		<u>≤1200</u>		l l	defineve E. COIT TAS
Fish	Fish-IBI	Latest		Insufficie	nt data	≥34	A	M	
community health (abundance, struct	ure and composition)	Expert assessment ³				N/A3	<u>C</u>		GW prepares and delivers Action Plan, including riparian
Macroinvertebrates (1 of 2)	MCI	Median	By 2040	<u>55.4</u> 2.2	D	<u>≥90</u>	c		Gw prepares and delivers Action Flan, including riparian
	QMCI	Median				24.5	_		restoration programme
Macroinvertebrates (2 of 2)	ASPM	Median		<u>0.1</u>	D	<u>≥0.3</u>	<u>C</u>	1	
Deposited fine sediment ²	%cover	Median		30	D	529	<u>C</u>		
Dissolved oxygen	mg/L	1-day minimum 7-day mean minimum		Insufficie	nt data	<u>≥7.5</u> ≥8.0	A		Stormwater consent strategy to improve to achieve TAS
Dissolved inorganic nitrogen ⁴	mg/L	Median		0.5	56		M		Brownfield urban development, strengthened minimum
No. 1 al contra la contra d	1.2.2	Median		0.02	24	≤0.	018		Biowniela arban development, strengthenea minimum
Dissolved reactive phosphorus ⁴	mg/L	95th%ile		0.04	19	<u>s0</u> .	049		standards for stormwater treatment
Dissolved copper	µg/L	Median		1.0	0	গা			
and a copper	292	95 th %ile		<u>4.0</u>	1	<u>≤1.4</u>	-2		Action Plan: pollution prevention focus on high risk
Dissolved zinc	ug/L	Median		18.3	D	D 58			
1.1		95 th %ile N/A ⁵		<u>51.5</u>		<u>≤15</u>			industry

19

NRP PC1 – Timing

- Submissions open till 15 December 2023 ٠
- Further submissions February 2024 ٠
- Hearings mid-2024 ٠
- Email address for questions: regionalplan@gw.govt.nz ٠
- PC1 website: https://www.gw.govt.nz/your-region/plans-policies-and-٠ bylaws/updating-our-regional-policy-statement-and-natural-resources-plan/naturalresources-plan-2023-changes/
- Maps: https://storymaps.arcgis.com/stories/ecd4158b2adf40f185f8897551b41d46 .

Pātai/Questions?

21